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A New Test for ARCH Effects and Its 

Finite-Sample Performance 

Yongmiao HONG and Ramsey D. SHEHADEH 
Department of Economics, Cornell University, Ithaca, NY 14853-7601 (yh20@cornell.edu) 
(ramsey.shehadeh@nera.com) 

We propose a test for autoregressive conditional heteroscedasticity based on a weighted sum of 
the squared sample autocorrelations of squared residuals from a regression, typically with greater 
weight given to lower-order lags. The tests of Engle, Box and Pierce, and Ljung and Box are 
equivalent to the test with equal weighting. Our test does not require formulation of an alternative 
and permits choice of the lag number via data-driven methods. Simulation studies show that the 
new test performs reasonably well in finite samples especially with greater weight on lower-order 
lags. We apply the test in two empirical examples. 

KEY WORDS: Cross-validation; Efficiency; Frequency domain; Monte Carlo; Spectral density; 
Weighting. 

Since Engle (1982) introduced the autoregressive con- 
ditional heteroscedasticity (ARCH) model, there has been 
considerable interest in estimation of and testing for dy- 
namic conditional heteroscedasticity of the regression dis- 
turbance. The ARCH model and its various generalizations 
[e.g., Bollerslev's (1986) generalized ARCH (GARCH)] 
have proved quite useful in modeling the disturbance be- 
havior of regression models of economic and financial time 
series. See Bera and Higgins (1993), Bollerslev, Chou, and 
Kroner (1992), and Bollerslev, Engle, and Nelson (1994) for 
recent surveys of this literature. 

From the perspective of econometric inference, neglect- 
ing ARCH effects may lead to arbitrarily large loss in 
asymptotic efficiency (Engle 1982) and cause overrejection 
of standard tests for serial correlation in conditional mean 
(Taylor 1984; Milhoj 1985; Diebold 1987; Domowitz and 
Hakkio 1987). In the context of autoregressive moving av- 
erage (ARMA) modeling, Weiss (1984) pointed out that ig- 
noring the ARCH effect will result in overparameterization 
of an ARMA model. 

In practice, the most popular test for ARCH is Engle's 
(1982) Lagrange multiplier (LM) test for ARCH(q) under a 
two-sided alternative formulation. When the null hypothe- 
sis of no ARCH is true, this statistic is asymptotically dis- 
tributed as a chi-squared random variable with q degrees 
of freedom. It is simple to calculate and is asymptotically 
locally most powerful if the true alternative is ARCH(q), a 
characteristic it shares with the likelihood ratio and Wald 
tests (Engle 1982) under a two-sided alternative formula- 
tion. [In the ARCH context, it is also possible to construct 
a one-sided test. With the one-sided alternative, the LM test 
has a standard chi-squared distribution. On the other hand, 
the likelihood ratio and Wald tests may have an asymp- 
totic mixture of chi-squared distributions. See Bera, Ra, 
and Sarkar (1998).] An alternative approach is to subject 
the squared residuals to such standard tests for serial corre- 
lation as the portmanteau tests of Box and Pierce (1970) and 
Ljung and Box (1978), which are based on the sum of the 
first q-squared sample autocorrelations of the squared resid- 
uals. These tests, as shown by McLeod and Li (1983), are 

also asymptotically distributed as chi-squared random vari- 
ables with q df. Granger and Terdisvirta (1993, pp. 93-94) 
showed that they are asymptotically equivalent to Engle's 
(1982) LM test. 

Detection of ARCH effects has attracted significant 
recent attention from researchers. Contributions include 
those of Bera and Higgins (1992), Brock, Dechert, and 
Scheinkman (BDS, 1987), Gregory (1989), Lee (1991), Lee 
and King (1993), and Robinson (1991a). In this article, we 
propose a new test for the presence of ARCH in the resid- 
uals from a possibly nonlinear regression model. The test 
is based on an extension of Hong's (1996) spectral density 
approach and results for testing serial correlation of un- 
known form in conditional mean. Specifically, the null hy- 
pothesis of no ARCH implies that the normalized spectral 
density of the squared residuals from a regression model is 
the uniform density on the frequency interval [-7r, 7r]. Al- 
ternatively, if ARCH exists, the normalized spectral density 
of the squared residuals is nonuniform in general. There- 
fore, we can construct a test for ARCH by comparing 
a kernel-based spectral density estimator of the squared 
residuals to the uniform density via an appropriate diver- 
gence measure. When a quadratic norm is used, the new 
test turns out to be a properly standardized version of the 
weighted sum of squares of all n - 1 sample autocorrela- 
tions of the squared residuals, with weighting depending 
on the kernel function. Most commonly used kernels typ- 
ically give greater weight to lower-order lags. The excep- 
tion is the truncated kernel, which gives equal weight to 
each lag. 

Interestingly, when using the truncated kernel (i.e., uni- 
form weighting), our approach delivers a generalized Box 
and Pierce (1970) type of test, which also is asymptotically 
equivalent to a generalized version of Engle's (1982) LM 
test for ARCH. (See Theorem 3 following.) Because eco- 
nomic agents normally discount past information, the older 
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the information, the less effect it has on current volatility. 
Therefore, when a relatively large q is used, it seems that 
uniform weighting tests are likely not fully efficient; a bet- 
ter test should put greater weight on recent information. 
Indeed, it can be shown that, when a large q is used, many 
nonuniform kernels deliver more powerful tests than the 
truncated kernel. Therefore, our approach might be more 
powerful than the Box-Pierce-Ljung and LM tests in many 
practical situations. In fact, a linearly declining weighting 
scheme with a relatively long lag often has been used in test- 
ing and estimating ARCH models (e.g., Engle 1982, 1983; 
Engle and Kraft 1983; Engle, Lilien, and Robins 1987; Bera 
and Higgins 1993). Among other things, such a scheme in- 
creases power, although it has been criticized by Bollerslev 
(1986) and others as an ad hoc approach. In comparison, our 
kernel-based weighting scheme arises endogenously from 
the frequency-domain approach. For persistent ARCH ef- 
fects, frequency-domain inference suggests that it is better 
to employ a long lag. Therefore, it is desirable to allow 
growth of the number of lags with the sample size for such 
alternatives. 

In addition to its relative efficiency gain, our test is 
also relatively convenient to implement. It is based on a 
weighted sum of squared autocorrelations of the squared 
residuals and has a null, asymptotically one-sided normal 
distribution. Furthermore, we do not require formulation 
of the alternative model. Our asymptotic theory allows the 
lag number to be chosen via such data-driven methods as 
cross-validation. Such methods may reveal some informa- 
tion about the true alternative. With a data-driven q, one 
can obtain a nonparametric spectral density estimate for 
the squared residuals. This estimate usually enjoys some 
optimality properties and contains information on autocor- 
relations in squared residuals-that is, volatility clustering. 
This may be appealing when no prior information about the 
true alternative is available, as is common in practice. In 
applications of the existing ARCH tests, one usually must 
calculate statistics for several, possibly many, values of q. It 
is common that some statistics are significant and some in- 
significant. Consequently, drawing conclusions from such a 
sequence can be a delicate business because these statistics 
are not independent. 

In Section 1, we introduce a class of new ARCH tests. In 
Section 2, we discuss choice of the lag number for our test 
via data-dependent methods, particularly cross-validation. 
In Section 3, we discuss the relationships between our tests 
and some important existing tests. In Section 4, we conduct 
a simulation study to compare finite-sample performances 
of the new tests and those of Engle (1982), Box and Pierce 
(1970), Ljung and Box (1978), Lee and King (1993), and 
BDS. We also present two empirical examples in Section 
5. In Section 6, we conclude the article. All proofs are col- 
lected in the Appendix. 

1. A NEW TEST FOR ARCH 

Consider the data-generating process (DGP) 

Yt = g(Xt, bo) + Et, t = 1,..., n, (1) 

with ARCH error 

Et = tth/2, (2) 

where Yt is the dependent variable; Xt is a d x 1 vec- 
tor containing exogenous variables and lagged dependent 
variables; bo is an 1 x 1 unknown true parameter vec- 
tor in IRl;g(Xt,b) is a given, possibly nonlinear, func- 
tion such that, for each b,g(, b) is measurable with re- 
spect to Il-1, the information set available at period 
t - 1; and g(Xt, -) is twice differentiable with respect to 
b in an open neighborhood N(bo) of bo almost surely, 
with limn• n- r1 t=1 ESUPbEN(bo) flVbg(Xt, b)l4 < 0c 
and limn-+ n-' •-•n ESUPbEN(bo) V2g(Xt, b)l2 < 
where 1I - II is the Euclidean norm in I1. [For linear models- 
i.e., g(Xt, b) = XIb--these dominance conditions reduce to 

limn-+on- - 1jE EjjXt114 < 00.] 
The function ht is a positive, time-varying, and measur- 

able function with respect to tl-. We assume that ?t is iid 
with E(?t) = 0, E(t2) = 1, and E(?t8) < 00. In particular, 
we do not require that •t be N(O, 1), which may be too re- 
strictive for many high-frequency financial data. In addition, 
we assume that ?t and X, are mutually independent for t > 
s. By definition, Et is serially uncorrelated with E(Et) = 0. 
But, its conditional variance, E(et Ctl) = ht, may change 
over time. For example, if ht follows an ARCH(qo) process, 
we have h = to + - i=1 a2-i, where ao > 0 and ai 0 
to ensure positivity of ht. If ht follows a GARCH(po, qo) 
process, ht ao + qo Po2 E? process, h = 

o + i=1 -i + +j=l jht-j, where 
a0o > 0. 

The null hypothesis of no ARCH effect is Ho: ht = a2 al- 
most surely for some 0 < a < 00 and all t = 1, 2, ..This 
is equivalent to conditional homoscedasticity. Define ut = 
E /g2 _ 1, where g2 - E(E2). Then, under Ho, ut = 1t2 Et ao0 0 , whrt t o 

a white-noise process. The white-noise hypothesis implies 
a uniform normalized spectral density or distribution func- 
tion. When ARCH exists, the spectral density or distribution 
function will not be uniform in general. Therefore, a test 
for Ho can be based on the shape of the spectral density or 
distribution function. Researchers have employed the shape 
of the spectral distribution function to test various hypothe- 
ses on serial dependence (e.g., white noise). These include 
Anderson (1993), Bartlett (1955), Durbin (1967), Durlauf 
(1991), and Grenander and Rosenblatt (1953, 1957). See 
Priestley (1981) and Anderson (1993) for surveys. Extend- 
ing these works to the ARCH context should be possible, 
though we have not seen such results in the literature. 

Relatively few tests are based on the spectral density 
function. Although the periodogram is not consistent for 
the spectral density, one can use Parzen's (1957) smoothed- 
kernel spectral density estimator to test the white-noise hy- 
pothesis, as did Hong (1996). This approach involves the 
choice of a smoothing parameter, a sometimes delicate busi- 
ness. But, maximal power is often attainable if this parame- 
ter is chosen via an appropriate data-driven method. In this 
article, we extend Hong's (1996) spectral density approach 
to the ARCH context. Our asymptotic theory here permits 
a data-dependent smoothing parameter. 
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Let f(w) be the normalized spectral density function of 
ut. Consequently, f(w) = fo(w) - 1/21r for all frequencies 
w e [-7r, wr] under Ho. In contrast, f(w) fo(w) in general 
when ARCH exists. It follows that a test for Ho can be 
based on the L2 norm 

L2(f; fo) 
= 2 7r(f(w) 

- fo(w))2 dw(3) 

where f is a consistent spectral density estimator for f. 
As will be seen, tests based on (3) can be rather simple to 
compute; no integration is required. 

We now construct an estimator for f. Let b be an n1/2- 
consistent estimator for bo. For example, b can be the non- 
linear least squares estimator 

b = argmin n' (Y - g(Xt, b))2. 
b t=1 

Such an estimator does not take into account the possible 
ARCH effects but consistently estimates bo under both the 
null and alternative. The estimated residual of (1) is Et = 
Yt - g(Xt, b). Put Ut = 

t2 1, where 
t 

= ?t/8n and = 

n-1 r t=> 2. Then the sample autocorrelation function of 
{ut} is (j) = i(j)/r(O),j = O,+1,..., +(n - 1), where 

i(j) = n-1 Z=iil+ utut-IjI. A kernel estimator for f is 
given by 

n-1 

f(w) = (2r)-1 k(j/q)1(j)cos(jw) 
j=1-n 

for w E [-ir, wr]. Here, the bandwidth q - q(n) -+ oc and 
q/n -+ 0. The kernel function k: R -- [-1, 1] is symmetric, 
continuous at 0, and all but a finite number of points, with 
k(0) = 1 and f_0V k2(z) dz < 00. This implies that, for j 
small relative to n, the weight given to p(j) is close to unity, 
the maximum weight. The square integrability of k implies 
that k(z) - 0 as jzj -+ 00. Thus, eventually, less weight is 
given to p(j) as j increases. 

Examples of k include the Bartlett, Daniell, general 
Tukey, Parzen, quadratic-spectral (QS), and truncated ker- 
nels. (See, e.g., Priestley 1981, p. 441.) Of these, the 
Bartlett, general Tukey, Parzen, and truncated kernels are 
of compact support--k(z) = 0 for z > 1. For these ker- 
nels, q is the lag truncation number because lags of or- 
der j > q receive zero weight. In contrast, the Daniell 
and QS kernels are of unbounded support. Here, q is not 
a truncation point but determines the degree of smooth- 
ing for f(w). When the kernel is of unbounded support, all 
n- 1 sample autocorrelations of the squared residual are 
used. 

Following Hong (1996), we define our test statistic 

Q(q) = 
(2(f; fo) 

- Cn(k)) /(2Dn(k))1/2 

-( 1n-1- 

where the second equality follows by Parseval's identity, 
n-1 

Cn(k) = E (1 - j/n)k2(j/q) 
j=1 

and 
n-2 

Dn(k) = > (1 - j/n)(1 - (j + 1)/n)k4(j/q). 
j=1 

We note that Cn (k) and Dn(k) are approximately the mean 
and variance of n En-. k2(j/q)132(j). The factors (1-j/n) 
and (1 - j/n)(1 - (j + 1)/n) can be viewed as finite-sample 
corrections and are asymptotically negligible. Although we 
motivate our test using (3), Q(q) involves neither numerical 
integration nor estimation of f. This frequency-domain mo- 
tivation leads to an appropriate choice of q via data-driven 
methods, as will be seen. 

Our first result shows that Q(q) is asymptotically stan- 
dard normal under Ho. 

Theorem 1. Let q --+ o, q/n -+ 0. Then under the stated 
conditions and H0, Q(q) -+ N(O, 1) in distribution. 

The test is one-sided because in general Q(q) diverges to 
positive infinity when ARCH exists. Consequently, appro- 
priate upper-tailed critical values of N(O, 1) must be used. 
For example, the critical value at the 5% significance level 
is 1.645. 

For large q, q-Dn (k) -+ D(k) = fo7 k 4(z) dz. Thus, one 
can replace Dn(k) by qD(k) without affecting the asymp- 
totic distribution of Q(q). Under some additional condi- 
tions on k and/or q, q-1Cn(k) = C(k) + o(q-1/2), where 
C(k) _ fo k2(z) dz; we also can replace Cn(k) by qC(k). 
Thus, a more compact, asymptotically equivalent test statis- 
tic is 

"n-1 

Q*(q) 
= 

n k2(j/q)2(j) 
- qC(k) (2qD(k))1/2 

j=1 

Because Q(q) is based on the whole-sample autocorrela- 
tion function 3(j) of the squared residual fit, it can detect 
the whole class of linear dependencies of ht-that is, auto- 
correlation in the squared residuals. Hence, it may be pow- 
erful against ARCH and GARCH alternatives, especially 
strongly persistent ones when a long lag is used. The test 
cannot, however, detect all deviations from conditional ho- 
moscedasticity. For example, it has no power if ht follows 
a tent map, a typical nonlinearity from chaos theory. Of 
course, like the LM test, the test has power against many 
types of nonlinearity. 

When the regression model (1) is misspecified, the Q(q) 
test may falsely reject the null hypothesis Ho. This is not pe- 
culiar to Q(q). The same is true of all existing ARCH tests; 
all, explicitly or implicitly, assume correct specification of 
the regression model. In the present context, Equations (1) 
and (2) with existence of a consistent estimator b for bo (cf. 
Assumptions A.1-A.5 in the Appendix) imply correct spec- 
ification of regression model (1). Such an assumption makes 
sense because one is usually interested in ARCH only when 
the regression model is correctly specified. 
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The Q(q) test is based on the squared deviation of f (w) 
from fo(w), weighted equally for all frequencies w over 
[-7r, ir]. This is appropriate when no prior information is 
available. One can direct power toward specific directions 
of interest by giving different weights to different frequen- 
cies. For example, if one is interested in detecting strongly 
persistent ARCH effects, greater weight can be given to fre- 
quencies near 0. When nonuniform weighting for frequen- 
cies is used, an L2-norm-based test will involve numerical 
integration. (We emphasize that weighting for frequencies 
is different from weighting for lags.) 

Alternatively, tests can be based on other appropriate 
global divergence measures, such as the supremum over 
[0, 7r] of the absolute value of the deviation f(w) - fo(w): 

(q) =()1/2 sup If(w)-fo(w) 2 wE [o,Gr] 

n-1 

- 71/2 sup 
 

k(j/q)1(j)xV/cos(jw) 
wE[,0-r] j=1 

This test is computationally more complicated than Q(q). 
Following reasoning analogous to, but more complicated 
than, that of Anderson (1993) and Durlauf (1991), one can 
expect that Q(q) has a nonstandard null asymptotic distribu- 
tion that is the supremum of a Gaussian process with mean 
0 and covariance depending on both w and k. For analytic 
simplicity, we focus on Q(q) here, but we study the power 
of Q(q) in our simulations. 

2. CROSS-VALIDATION 

An important practical issue with Q(q) or Q*(q) is the 
choice of q, which may have significant impact on power 
in finite samples. Clearly, the optimal choice of q depends 
on the unknown alternative. It is, therefore, desirable to 
choose q via data-driven methods. Although we need not 
compute f to compute Q(q), our approach suggests that it 
is appropriate to choose q using an optimality criterion for 
the estimation of f. Before we discuss some data-driven 
methods in detail, we extend Theorem 1, which assumes a 
nonstochastic q, to allow for a data-dependent bandwidth 
q. For this purpose, we further restrict the class of kernels 
k such that lk(zi) - k(z2)1 _ All1 - z21 for any z1, z2 and 
some 0 < A < co, and Ik(z)l ? alzl- for all z E R and 
for some 7 > •. The Lipschitz condition on k rules out 
the truncated kernel but allows for most commonly used 
nonuniform kernels. 

Theorem 2. Suppose the data-dependent bandwidth 
satisfies O/q - 1 = op(q-((3/2)v-1)), where v > (27 - 

)/(2r - 1) and q is a nonstochastic bandwidth such that 

q -+ oo, q"/n -+ 0. Then, under the stated conditions and 

Ho, Q(q) - Q(q) = op(1) and Q(Q) -+ N(0, 1) in distribu- 
tion. 

The range of admissible 0 depends on v, which in turn 
depends on r or k. The smaller is v, the larger is the range 
of admissible rates for q. For kernels with bounded support 
such as the Bartlett and Parzen kernels, any v > 1 is allowed 

because r = 00. Consequently, the condition q/q - 1 = 
op(q-((3/2)v-1)) is rather weak. For the Daniell kernel, any 
v > 3/2 is allowed because 7 = 1. In this case, the rate 
condition q/q - 1 = op(q-((3/2)v-1)) is also easy to satisfy. 
For such methods as Andrews's (1991) parametric "plug-in" 
bandwidth, q/q - 1 vanishes in probability at the parametric 
rate n-1/2 with q oc n1/5 for most kernels, but for such 
methods as Newey and West's (1994) nonparametric "plug- 
in" bandwidth, q/q - 1 vanishes at a rate slower than the 
parametric rate with q oc n1/3 for the Bartlett kernel. In 
general, our condition on q allows for a variety of data- 
dependent methods. 

One appropriate data-driven procedure is the cross- 
validation proposed by Beltrao and Bloomfield (1987). This 
delivers an automatic q by minimizing a cross-validated 
frequency-domain likelihood function. Robinson (1991b) 
showed that, asymptotically, such chosen q minimizes a 
weighted integrated mean squared error of f with suitable 
weights depending on the true spectral density f(w). This 
global procedure is more appropriate in the present con- 
text than the narrow-band methods used in estimating an 
autocorrelation-consistent covariance matrix (e.g., Andrews 
1991; Newey and West 1994) because Q(q) is based on all 
frequencies over [-w, 7r] rather than on frequency 0 only. 

The Beltrdo-Bloomfield procedure can be described as 
follows. Define 

n-1-2 

I(A) n- E t exp(-iAt)) , cE (-oo, oo). 
t=o 

This is the periodogram of it = E^2 /-2 1. Note that I is pe- 
riodic in A with periodicity 27. Put the Fourier frequencies 
Aj = 27j/n for j = 0, 1,..., n- 1. Then define the cross- 
validated spectral-density-function estimator at the Fourier 
frequencies as 

fJ(AJ;q) =j(q)-1 W(qAl)I(Aj -A•), 
ION(n,j) 

where aj (q) = lgN(n,j) W(qA1), W(A) = (27)-1 f_c k(z) 
exp(iAz) dz is the Fourier transform of a kernel function k, 
and N(n,j) = {0,+n,...} U {2j, 2j n,...} is the set of 
indices j for which I(A• - Al) = I(Aj). Note that when W 
is of compact support such that W(A) = 0 for AlA > 7, the 
effective summation is only over 1 for Il1 < n/2q. 

The cross-validated q• solves 

[n/2-1] 

qc= argmin 5 
{ln(Aj;q) +I(Aj)/fj(Aj;q)}, (4) 

qE[an,bn] j=l 

where [n/2 - 1] is the integer part of n/2 - 1 and 
the interval [an, b,] is predetermined. The objective func- 
tion In j (A•j; q) + I(Aj)/l (Aj; q) is the well-known Whit- 
tle approximation for the negative log-likelihood function 
of {it}. Therefore, t• approximately maximizes the log- 
likelihood of {St }. The parameter 0 can be real-valued, but 
an integer-valued • is more convenient here. Then the prob- 
lem (4) can be solved using grid search. By letting b, -+ 00 

as n -+ 00, 0 always will tend to infinity under the alter- 
natives with nonuniform f(w). Under the null hypothesis 
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of no ARCH, q will converge to the lower bound a, as 
n -+ 00 because the spectrum is flat. Consequently, we also 
let an -+ oo to satisfy the conditions of Theorem 2; namely, 
q, -+ o0. As long as an diverges at a slow rate and bn di- 
verges at a fast rate, the theoretically optimal qc will fall 
in this interval, and q^ will converge to it (cf. Robinson 
1991b). For example, with the Daniell kernel, q = Cn1/5 
for the alternatives for which f"(w) exists, where C de- 
pends on f(w). Then qc will converge to q, under the alter- 
native as n -+ oo if an/n1/5 -+ 0 and bn/n1/5 -+ 00o. We 
note that the choices of an and bn are to some degree arbi- 
trary, but these choices are of secondary importance because 
qc will converge to qc for large n. This is similar in spirit 
to Newey and West's (1994) method. Our simulation stud- 
ies, like those of Beltrdo and Bloomfield (1987) and Robin- 
son (1991b), reveal that qc is variable in finite samples. It 
gives better power, however, than simple "rule-of-thumb" 
choices of q, suggesting gains from its use. The procedure 
can be implemented efficiently using the fast Fourier trans- 
form (FFT). 

We now summarize the procedures to implement the 
test: 

1. Obtain any nl/2-consistent estimator b and save the 
residuals Et = Yt - g(Xt, b). 

2. Construct the sample autocorrelation function p(j) of 
Et = a 1. 
3. Choose a kernel k. For example, we can choose the 

Daniell kernel k(z) = sin(rz)/rz, z e (-oo, 00oo). Its Fourier 
transform W(A) = 7-11[I1AI < 7r]. 

4. Choose qc by the Beltrdo-Bloomfield (1987) cross- 
validation procedure. 

5. Compute the statistic Q(qc) and compare it to the 
upper-tailed critical value C, of N(0, 1) at significance level 

rq. If Q(qc) > C,, then one rejects Ho at level qj. 

Step 4 is not always necessary. If some q is preferred a 
priori, one can omit this step. A GAUSS program imple- 
menting these steps is available from us. 

Although the cross-validated q, is asymptotically opti- 
mal for the estimation of f(w) in terms of an integrated 
weighted mean squared error criterion, it may not be opti- 
mal for power of Q(q). For hypothesis testing, a sensible 
criterion is to choose q so as to maximize power and/or 
minimize size distortion. It can be expected that the opti- 
mal q chosen this way will generally be different from ic, 
although they may be of the same order of magnitude. This 
is a theoretically interesting but technically complicated is- 
sue that deserves further investigation; we defer it to future 
work. Nevertheless, our simulation and application suggest 
that • often delivers maximal or reasonably good power 
for Q(q) in finite samples. 

3. RELATIONSHIP TO SOME EXISTING TESTS 

We now discuss the relationship of our test to some im- 
portant existing tests for ARCH. We will show that, when q 
is large, a generalized version of Engle's (1982) LM test, as 
well as those of Box and Pierce (1970) and Ljung and Box 
(1978), can be viewed as a special case of our approach with 

the use of the truncated kernel-that is, uniform weighting. 
Because many nonuniform kernels deliver better power than 
the truncated kernel when q is large, we expect that our tests 
may have greater power than these tests for large q. 

Suppose that k is the truncated kernel, k(z) = 1 for Izl < 
1 and 0 for IzI > 1; Q(q) becomes 

QTRUN(q) = (BP(q) - q)/(2q)1/2 

given q3/2/n -+ 0, where 

q 

BP(q) = n PZ2(j) 
j=1 

is a Box and Pierce (1970) type of statistic for the squared 
residuals. The condition q3/2/n -+ 0 is stronger than q/n -+ 
0. This ensures q-1Cn(k) = 1 + o(q-1/2) and q-1Dn(k) = 

2 + o(1) for the truncated kernel. The test BP(q), as shown 
by McLeod and Li (1983), is asymptotically x2 under Ho. 
Intuitively, when q is large, we can transform BP(q) into 
an N(0, 1) by first subtracting the mean q and dividing by 
the standard deviation (2q)1/2. Therefore QTRUN(q) can be 
viewed as a generalized BP(q) test for large q. In practice, a 
modified but asymptotically equivalent statistic, originally 
proposed by Ljung and Box (1978), 

q 

LB(q) = n2 S E 2(j)/(n - j), 
j=1 

often is used for testing ARCH. The weights n/(n - j) 
are introduced to improve size performance and do not af- 
fect asymptotic power. These weights are fundamentally 
different from those of our Q(q) test, which affects the 
asymptotic power. The test LB(q) is asymptotically equiv- 
alent to BP(q). It follows that QTRUN(q) is also asymptot- 
ically equivalent to a generalized version of LB(q) under 
Ho; namely, 

QTRUN(q) - (LB(q) - q)/(2q)1/2 = Op(l). 

We now relate a generalized version of Engle's (1982) 
LM test to QTRUN(q). Put U = (Ui,...,un)' and Z = 

(Z',... ,Z)', where Zj (1,2_ ,...,t2_q)'. Then the 
LM test 

LM(q) = nU'Z(Z'Z)-1Z'/UU/U' 

- nR2 , 

where R2 is the uncentered squared multicorrelation coef- 
ficient from the ARCH regression 

4 O + at 1 + +2'2 + '.. + Qq +tq, 

t= 1,...,n, 
with the initial values g2 = 0 for t = -q + 1,...,0. This 
test is asymptotically x2 under Ho and is asymptotically 
locally most powerful if the true alternative is ARCH(q) 
with q fixed (cf. Engle 1982, 1984). Lee (1991) showed that 
a modified LM(q) test for GARCH(p, q) is the same as the 
LM(q) test for ARCH(q). Granger and Teriisvirta (1993) 
showed that the LM(q) test is asymptotically equivalent to 
BP(q) and LB(q) for fixed q. 
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For large q it is natural to consider the generalized version 
of Engle's test, 

QREG(q) = (LM(q) - q)/(2q)1/2 

= (nR2 - q)/(2q)/2 

The following theorem shows that QTRUN(q) is asymp- 
totically equivalent to QREG (q). 

Theorem 3. Let q - oo, q5/n O0. Then, under 
the stated conditions and Ho, QTRUN(q) - QREG(q) 
op(l), QREG(q) -? N(0, 1) in distribution. 

Like the LM test, QREG (q) can be viewed as a test for 
the hypothesis that all q coefficients of an ARCH(q) model 
are jointly equal to 0, where q grows with the sample size 
n. Intuitively, if the data are homoscedastic, then the vari- 
ance cannot be predicted by any past squared residuals. If 
a large variance for it can be predicted by large values of 
the past squared residuals, however, then ARCH effects are 
present. Any stationary invertible process in Et with contin- 
uous f(w) can be approximated well by a truncated ARCH 
model of sufficiently high order. Therefore, QREG(q) even- 

tually will capture a wide range of alternatives as more lags 
of g2 are included when n increases. This test is convenient 
to implement, but it cannot be expected to be fully efficient, 
as we show next. 

The preceding discussions show that the tests of 
QTRUN(q), QREG(q), BP(q), LB(q), and LM(q) put uni- 
form, or roughly uniform, weights on all q sample autocor- 
relations. Intuitively, this might not be the optimal weight- 
ing scheme. For most stationary ARCH processes, the au- 
tocorrelation decays to 0 as the lag increases. Intuitively, a 
better test should put greater weight on lower-order lags. 
We thus expect that tests based on nonuniform weight- 
ing may deliver better power than BP(q), LB(q), LM(q), 
QTRUN(q), and QREG(q). Using Pitman's relative efficiency 
criterion, it can be shown that this is indeed the case. Con- 
sider the following class of local ARCH alternatives: 

Han: ht an 2 1+ ?(ql/4/nl/2)Eaj 
j=1 

where aj 2 0 and -jl, aj < o00, which implies aj -+ 

0 as j -+ 00. Without loss of generality, we assume 

(q1/4 /n1/2) -'=1 a•j < 1 for all n to ensure positivity of ht. 
Following reasoning analogous to (but more tedious than) 
that of Hong (1996), it can be shown that, if q2/n -+ 0 
and q -+ co, Q(q) -+ N(p, 1) in distribution under Han with 
noncentrality parameter p = (Z7= aJ)2/{D(k)}1/2. Note 
that, whenever ARCH exists-that is, at least some aj > 0 
exist-Q(q) always has nontrivial power because p > 0. 
With q = CnY, where 0 < y < 1 and 0 < C < o00, the rela- 
tive efficiency of the Q(q) test using kernel k2 with respect 
to using kernel kl under Han is given by 

EFF(k2 : kl)= (D(k2)/D(kl))1/(2-Y ) 

Therefore, the Bartlett kernel kBg(z) = (1 - zl)1[zl _ 1] 
is about 120% more efficient than the truncated kernel 

kT(Z) = 1[ zI _ 1] because EFF(kB : kT) > 51/2. As done 
by Hong (1996), within a suitable class of kernel functions, 
the Daniell kernel maximizes the power of Q(q) under Han. 

The relative efficiency over the LM test does not contra- 
dict the well-known result that the LM test is locally most 
powerful when the true alternative is ARCH(q) with fixed 
q; here we consider a different regime; namely, q - 00o. 

Many earlier applications (e.g., Engle 1982, 1983; Engle 
and Kraft 1983; Engle et al. 1987; Bera and Higgins 1993) 
used linearly declining weighting schemes with relatively 
long lags. Such weighting schemes also serve to discount 
past information. But, as pointed out by Bollerslev (1986), 
these weighting schemes are somewhat ad hoc. In compari- 
son, our weighting depends on the kernel function k, which 
arises endogenously from the kernel spectral estimation. 

Recently, Lee and King (1993) proposed a locally most 
mean powerful scored-based (LBS) test for ARCH that ex- 
ploits the one-sided nature of the ARCH alternative. Their 
test statistic for ARCH, which is robust to nonnormality, is 
given by 

(n- - q) (2 / - _ 1) Eq1 2-i 
LBS(q) ( 

t- q ) -1Zt-i) 
[Et(^21 2_ \1)2] _ Et Eq 2 ) 

- (Et Eql 2-i)2}1/2 

(5) 

Under Ho, LBS(q) is asymptotically one-sided N(O, 1). Ob- 
viously, LBS(q) also puts uniform weight on all q sample 
autocorrelations of the squared residuals. Consequently, it 
may not be fully efficient in detecting the ARCH alterna- 
tives whose autocorrelation p(j) decays to 0 as the lag j 
increases. Therefore, we expect that Q(q) may be compet- 
itive with LBS(q) in some cases, as illustrated in our fol- 
lowing simulations and empirical applications. Comparing 
f(w) and fo(w) at frequency 0, Hong (1997) constructed a 
test that exploits the one-sided nature of the ARCH alterna- 
tive and uses a flexible weighting scheme. Although Q(q) 
does not exploit this, it is asymptotically more efficient than 
Hong's (1997) test because Q(q) can detect a class of local 
alternatives of O(ql/4/nl1/2). Hong's (1997) test only can 
detect a class of local alternatives of O(ql/2/nl1/2). The 
weighting schemes of Q(q) and Hong's (1997) test also 
differ. 

4. MONTE CARLO EVIDENCE 

We now study the finite-sample performances of our 
tests in comparison to a variety of existing ARCH tests. 
Consider the following DGP: Yt = X'bo + t, t = tt/2 

where Et - NID(0, 1) and Xt = (1,mt)' with mt = 

Amt-1 + -vt and vt NID(0, o-). This model was first 
used by Engle, Hendry, and Trumble (1985). We consider 
four processes for ht--(1) ht = w, (2) ht = w + a12_l, 
(3) ht = w + a(E 1 1/i2)-1 i 2t- /i2, and (4) ht = 
w + aEt-1 + pht_1. 

Under (1), ARCH is not present. This permits us to ex- 
amine the sizes. Alternative (2) is an ARCH(1) process of- 
ten examined in existing simulation studies (e.g., Engle et 
al. 1985; Diebold and Pauly 1989; Luukkonen, Saikkonen, 
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and Terasvirta 1988; Bollerslev and Wooldridge 1992; Lee 
and King 1993). Alternative (3) is an ARCH(8) process with 
weights declining at a geometric rate as the lag increases. 
Finally, alternative (4) is a GARCH(1, 1) process. The 
GARCH model has been the workhorse in the literature. 

We set b, = (1, 1)' and w = 1. For the exogenous vari- 
able mt, we set A = .8 and ao2 = 4. As done by Engle et 
al. (1985), mt is generated for each experiment and then 
held fixed from iteration to iteration. For alternatives (2) 
and (3), we consider two values of a, .3 and .95. For alter- 
native (4), we choose three combinations of (a, r0)-(.3, .2), 
(.5, .2), and (.3, .65). We consider sample sizes of n = 2" 
for m = 6, 7, 8, and 9. These sample sizes are chosen for 
convenience because we employ the Cooley-Tukey FFT al- 
gorithm in our cross-validation procedure. (Our procedure 
is applicable when n is not a power of 2, though at some sac- 
rifice of computational efficiency. This sacrifice is costly in 
simulation.) We set Ec = 0 for t < 0 and ho = 1. To reduce 
the possible effects of these initial conditions, we generate 
n + 100 observations and then discard the first 100. The 
iteration number is 10,000 for (1), and 1,000 for (2)-(4). A 
GAUSS-386 random-number generator is used. 

We choose the Daniell kernel for our tests, QDAN (q) and 

QDAN(q), and also consider their cross-validated versions, 
Qcv = QDAN (c) and Qcv = QDAN(qc). We only study the 
powers of Qcv and QDAN(q) because their null limit dis- 
tributions are unknown. We compare our tests to Engle's 
LM(q), Box and Pierce's BP(q), Ljung and Box's LB(q), 
Lee and King's LBS(q), the truncated kernel-based test 
QTRUN(q), the generalized LM test QREG(q), and BDS, (q) 
for q = 1,..., 20. We include BDS.y(q) because it has been 

popular in the literature partly for its capacity to detect 
ARCH alternatives. This test involves choice of a distance 
parameter y E (0, 1) in terms of the data spread. To study 
the impact of y on size and power, we consider two values, 
7 = 1/4 and 1/2. (We use the BDS code of D. Dechert.) 

For economy, we report results for n = 128 in detail 
and briefly mention results for other sample sizes. Fig- 
ure 1 shows the sizes at the 5% level. The QDAN(q) test 
performs well for all q and overrejects only slightly. For 
large q, BP(q), QTRUN(q), LM(q), and QREG(q) all tend 
to underreject, most seriously for LM(q). The LB(q) test 
underrejects for small q and performs well for medium and 
large q. The LBS(q) test has reasonable size for small q, 
underrejects for medium q, and overrejects for large q. The 
BDS,(q) test significantly overrejects for the two choices 
of 7. Finally, the cross-validated Qcv gives a rejection rate 
of 7.79%, illustrating some overrejection at the 5% level. 
(To facilitate comparison, the result for Qcv is reported in 
each figure as a horizontal line, the same value for each q. 
Since 4• is chosen endogenously it may vary for each iter- 
ation of the simulation.) Comparison of QDAN(q) and Qcv 
indicates that this overrejection arises from the additional 
noise of cross-validation. (Here, the mean of j0 is 3.8 with a 
standard deviation of 3.7; the empirical distribution of q0 is 
left-skewed.) As will be seen, the gain in power from using 

0• may compensate for this moderate overrejection. At the 
10% and 1% levels, the size of LBS(q) exhibits a U-shaped 

25 

S.........BDS1 

20 

" BDSI 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 at the 5% Level. The simulated model is yLB = 1 + mt + t, where 

= 
,thtllP 

ht = 
1- - t - N(_ , i), mt = 

Imt 
+ vt, I 

= .8, and"vt - N(O, 

LBS LM 

0 I I I I I I I I 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Lag(q) 

Figure 1. Empirical Size: Rejection Rates of Tests Under the Null 
at the 5% Level. The simulated model is Yt = 1 + mt + Et, where Et 
- th112, ht = 1, t - N(O, 1), mt = Amt-l + vt, A = .8, and vt N(O, 
4). Calculations are based on a sample size of 128 and 10,000 replica- 
tions. The result for Qcv (for which ;Tc is chosen via cross-validation and, 
therefore, may change for each iteration) is included for comparison as 
a horizontal line. 

curve, performing best for small q. At the 10% level, the 
finite-sample correction again improves the sizes of LB(q) 
versus BP(q), while it induces some overrejection for LB(q) 
in the 1% level. Cross-validation for Qcv delivers a rejec- 
tion rate of 11.6% at the 10% level, and a strong rejection 
rate of 4.2% at the 1% level. The LM(q) test underrejects 
at both levels. The sizes of the tests improve, to varying de- 
grees, in larger samples. For n = 512 and the 5% level, the 
Q tests have sizes between 5% and 6%; the other tests have 
sizes between 3% and 5%. The cross-validated Qcv test 
still exhibits some overrejection, 7% at the 5% level. At the 
10% level, the sizes of all of the tests are similar and range 
between 7% and 11%. At the 1% level, LBS(q), LB(q), and 
BP(q) perform well, close to 1%. The Q tests show some 
overrejection but never exceed 2.5%; Qcv remains 3.5%. 
The LM(q) test exhibits some underrejection. 

As suggested by asymptotic theory, the sizes of Qcv im- 
prove as the sample size n increases, but very slowly. In a 
finite sample, one can use bootstrap to obtain more accurate 
sizes for Qcvy. Given a sample of size n, we first obtain the 
ordinary least squares (OLS) residuals ut = Yt - X/b, where 
b is the OLS estimator for b0. We then draw a sample of 
residuals {'24 } of size n, with replacement, from the empir- 
ical distribution function of {it}. Next, we obtain a sample 
{Yt*} of size n, where Y1* = Xb i4. On each sample 
{ 1Y* }, we perform the regression described previously and 
submit the regression residuals to each test. We repeat this 
for 1,000 iterations and obtain 1,000 bootstrap test statis- 
tics, which are used to form the bootstrap empirical distri- 
bution function for each test. We then compare the actual 
test statistics to the bootstrap empirical distribution func- 
tions to find the bootstrap p values. The bootstrap sizes of 
Qcv at the 10%, 5%, and 1% levels are 12.2%, 5.3%, and 
1.5%, respectively. These are significantly better than the 
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sizes using asymptotic critical values, especially at the 1% 
level. 

Figure 2 shows powers against ARCH(1) using the 
5% empirical critical values. The empirical critical val- 
ues are obtained from the iterations under (1). First, 
LBS(1) is slightly more powerful than LM(1), LB(1), and 
QDAN(1), suggesting some gain from exploiting the one- 
sided nature of the alternative. The tests LM(1), LB(1), 
QDAN(1), QTRUN (1), and QREG (1) have the same power, 
slightly better than QDAN(1) and BDS1/4(1). Next, the pow- 
ers of all the tests except QDAN(q) decrease rapidly as q 
increases, most dramatically for LBS(q) and BDS1/4(q). 
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Figure 2. Empirical Power: Rejection Rates of Tests Under the 
ARCH(1) Alternative at the 5% Level. The simulated model is yt = 

1 + mt + Et, where Et - 5th112, ht = 1 + ar2t1, Jt N N(O, 1), 
mt = Amt_1 + vt, A = .8, and t v N(O, 4). Calculations are based on a 
sample size of 128 and 1,000 replications. Rejection rates are based on 
the size-corrected empirical critical values for the 5% level. The result 
for Qcv (for which qc is chosen via cross-validation and, therefore, may 
change for each iteration) is included for comparison as a horizontal line. 
(a) a = .3; (b) a = .95. 
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Figure 3. Empirical Power: Rejection Rates of Tests Under the 
ARCH(8) Alternative at the 5% Level. The simulated model is yt = 1 

rates are based on the size-corrected empirical critical values for the 
5% level. The result for Qcv (for which ?, is chosen via cross-validation 
and, therefore, may change for each iteration) is included for comparison 
as a horizontal line. (a) a = .3; (b) a = .95. 

The tests LM(q), LB(q), BP(q),QTRUN(q), QREG(q), and 

QDAN(q) perform similarly. For q > 1, QDAN(q) is the most 
powerful test. Its power loss as q increases is smaller than 
the losses of the other tests because QDAN (q) discounts 
higher-order lags. The power of BDS1/4(q) is comparable 
to that of LBS(q) except for small q: BDS1/2(q) has low 
power for small q but performs better than BDS 1/4(q) for 
q > 8. (We report y = 1/4 because this choice appears to 
maximize the power of BDS for n 128 in most cases. We 
know of no theoretical basis for choosing critica.) For large ,for the 
as in Figure 2(b), the power of QDAN (q) increases slightly 
and then decreases as q increases. This is not surprising; 
the spectral density of an ARCH(1) process includes con- 
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tributions from q > 1 that are substantial for large a. Fi- 
nally, we note that the cross-validation delivers reasonable 
power for Qcv, although a little lower than those of LM(1) 
and LB(1), which use the correct information that the true 
ARCH order qo = 1. The power of Qcv is low, 31% and 
80%, respectively. (We do not include Qcv in the figures.) 

Next, Figure 3 reports powers against ARCH(8). In Fig- 
ure 3(a), QDAN (q) has the highest power for all q, including 
q = 8. The tests QDAN(8) and BDS1/4(8) perform similarly. 
The Qcv test has roughly the same or better power than 
QDAN (8); CV only has power 27%. The power of QDAN (q) 
increases slightly and then decreases as q increases. Al- 
though LBS(8), LM(8), BP(8), and LB(8) are asymptot- 
ically locally most powerful against ARCH(8), none of 
them achieves its maximum power at q = 8. The powers 
of LBS(q), LM(q), LB(q), QTRUN(q), and QREG(q) attain 
their maxima at q = 1 and then decrease as q increases. 
Again, LBS(1) has better power than the related tests at 
q = 1. The tests LM(1), LB(1) and QDAN (1) have simi- 
lar power. As q increases, the power of LBS(q) drops dra- 
matically. The tests LM(q), BP(q), LB(q), QTRUN(q), and 

QREG(q) perform similarly. BDS1/4(q) performs quite well 
for small q but is dominated by BDS1/2(q) for large q. 
Again, the power of QDAN(q) declines slowly. In Figure 
3(b), BDS1/4(q) dominates QDAN(q) for q < 6. 

Figure 4 reports powers against GARCH(1, 1). First, we 
examine Figure 4, (a) and (b), in which a changes but / 
is fixed. For (a, /) = (.3, .2), the power patterns and rank- 
ing of the tests are similar to those under ARCH(1). In 
particular, all the tests have maximum power at q = 1, ex- 

cept QDAN(q) and QDAN(q), which have maximum power 
at q = 2 and 3, respectively. LBS(q) is the most power- 
ful at q = 1, and the other tests have similar power. [As 
pointed out by Lee (1991) and Lee and King (1993), LM(1) 
and LBS(1) are the appropriate LM and LBS tests for both 
ARCH(1) and GARCH(1, 1).] For q > 2, QDAN(q) has the 
highest power. The power of Qcv is close to QDAN(1). For 
(a, /) = (.5, .2), we note two primary differences from the 
preceding. First, the power curves of BDS, (q) and QDAN (q) 
are concave and each achieves its maximum for q > 5. Sec- 
ond, both the advantage of LBS(1) over the other tests and 
the cost of using a cross-validated q, are smaller. Last, Fig- 
ure 4(c) contains results for (a, p) = (.3, .65), where a +/3 
is close to 1, a characteristic common in empirical research. 
All of the power curves now become concave; none of the 
tests achieves its maximum power at q = 1. Indeed, it is 
reasonable that LM(1) and LBS(1) cannot be expected to 
be optimal here. For persistent GARCH, it is better to in- 
clude more lags in the tests. Here, the power of QDAN(q) 
decreases very slightly even for large q and achieves its 
maximum power at q as large as 7. As /3 increases, the rel- 
ative power ranking of the tests remains much the same, 
though the concavity is more pronounced. Finally, we note 
that for most GARCH(1, 1) processes, cross-validation de- 
livers Qcv with reasonable power, performing better than 
LM(1), LB(1), and BP(1) in every case, while tcv has low 
power. 

[We also examined power against several other parameter 
values and variance processes including ARCH(4) and 
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Figure 4. Empirical Power: Rejection Rates of Tests Under the 
GARCH(1, 1) Alternative at the 5% Level. The simulated model is Yt = 

1+ mt + et, where et = 5th1/2, ht =1 + e + pht-1, Ct N N(0, 1), 
mt = Amt_1 + vt, A = .8, and vt w N(O, 4). Calculations are based on a 
sample size of 128 and 1,000 replications. Rejection rates are based on 
the size-corrected empirical critical values for the 5% level. The result 
for Qcv (for which qc is chosen via cross-validation and, therefore, may 
change for each iteration) is included for comparison as a horizontal line. 
(a) (0, P) = (.3, .2); (b) (0, 3) = (.5, .2); (c) (0, 3) = (.3, .65) 
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ARCH(12), as well as the Student's t and gamma distri- 
butions for ?t. The results are largely similar to those pre- 
sented previously. For some of these additional results, see 
Hong and Shehadeh (1996).] 

In all of our simulations, the mean of q^ increases with 
the sample size and ARCH persistence. For Figure 2(a) 
(a = .3), the mean of q^ is 5.8 with a standard deviation 
of 3.9. For n = 512, the mean and standard deviation are 
7.7 and 4.7. For Figure 4(c) [(a, 0) = (.3, .65)], the means 
and standard deviations of q^ are 11.1 and 5.0, respectively, 
for n = 128, and 17.2 and 3.6 for n = 512. The distribu- 
tions of q^ are skewed left for weak persistence and become 
increasingly symmetric under stronger persistence. 

Summing up, we can draw the following conclusions 
from our simulation: 

1. Both QDAN(q) and LB(q) have reasonable size and 
perform better than the uniform-weight tests for most q. 
The QREG(q) test has better size performance than LM(q) 
for all q; QTRUN(q) has better size performance than BP(q). 
BDS, (q) has poor size performance, overrejecting the null 
hypothesis in most cases. 

2. For each q, our test with nonuniform weights, 
QDAN(q), has power as good or better than the uniform- 
weighting test, QTRUN(q), against all the alternatives un- 
der consideration. LM(q), BP(q), LB(q), and QREG(q) have 
powers similar to QTRUN(q). 

3. Lee and King's LBS(q) test often has the best power 
for q = 1. For large q, however, LBS(q) is dominated by 
all of the other tests, independent of the true alternative. 
The supremum-norm test QDAN(q) and BDS1/4(q) have 
the best power for persistent ARCH alternatives such as 
ARCH(8) but perform less well against GARCH alterna- 
tives. For large q, QDAN (q) is often the most powerful. 

4. For persistent GARCH(1, 1) processes, the LM(1) and 
LBS(1) tests do not have the best power. Instead, these tests 
have better power when more lags are employed. On the 
other hand, the power of QDAN(q) is only slightly affected 
by the truncation lag number q over rather wide ranges of 
q and often is the greatest of all the tests. 

5. For our test Qcv, cross-validation exhibits some size 
overrejection but always delivers good power. To some ex- 
tent, cross-validation reveals information about the true al- 
ternative. The costs associated with misspecification of an 
unknown true alternative appear high for all of the other 
tests, though lower for QDAN(q). As opposed to Qcv, tcv 
performs poorly relative to QDAN(q) in each experiment. 

5. EMPIRICAL APPLICATIONS 

We now apply our tests to two datasets, the U.S. implicit 
price deflator for gross national product (GNP) and the daily 
nominal U.S. dollar/Deutschemark exchange rate. 

5.1 U.S. GNP Deflator 

We consider inflation as measured by the log change in 
the quarterly implicit price deflator of U.S. GNP, 7lt = 

In(GDt/GDti). (These deflator data are reported by the 
U.S. Bureau of Economic Analysis.) Among others, En- 

gle and Kraft (1983) and Bollerslev (1986) examined this 
series in detail. These researchers reported that the con- 
ditional mean E(7rt lt-1) appears well specified by an 
autoregressive (AR) model. Standard univariate time series 
methods lead to identification of the following AR(4) model 
for 7rt: 

7rt = .148 + .355 7rt-1 + .265 7rt-2 
(.076) (.090) (.094) 

+ .199 Wt-3 + .059 rt-4 + Et 
(.093) (.088) 

The model is estimated on quarterly data from the sec- 
ond quarter of 1952 to the first quarter of 1984, a total of 
128 observations. OLS standard errors appear in parenthe- 
ses and the R2 = .648. The p values of the LM, BP, and LB 
tests for serial correlation in the mean are .80 or greater for 
lags between 1 and 20, suggesting an absence of autocor- 
relation in the residuals. [In the presence of ARCH effects, 
these standard tests for serial correlation in mean will tend 
to overreject the null hypothesis of no serial correlation. 
This fact does not change the conclusion here. But, for an 
earlier period the BP, LB, and LM tests for serial correlation 
in mean are all significant at the 10% level for a lag of 5. As 
Bollerslev (1986, p. 323) noted, "[f]rom the late 1940s until 
the mid-1950s the inflation rate was ... hard to predict." Al- 
though the heteroscedasticity in this period is striking, the 
mean is difficult to specify. We therefore omit this period 
and begin our analysis at the earliest date at which serial 
correlation in mean is not evident with these tests.] We note 
that the dynamic regression model here is different from the 
static regression models with exogenous time series vari- 
ables used in the simulation experiment. Nevertheless, one 
can expect that ARCH tests will perform similarly under 
both the regression models with the same ARCH alterna- 
tive because ARCH tests, based on the squares of resid- 
uals, are not very sensitive to the estimation effect even 
in moderately small samples. The estimation effect has an 
asymptotically negligible impact on both size and power 
of ARCH tests, whether the regression model is static or 
dynamic. 

We apply our tests, as well as those of Engle (1982), 
LB, BP, BDS, and Lee and King (1993) to the estimated 
squared residuals from the preceding regression. In Table 
1, we report the p values for the tests at different q. With 
use of the Daniell kernel, cross-validation delivers •? = 6. 
Our test Qcv = QDAN(gc) = 1.901, giving a p value of 
.028 using the asymptotic critical value. Thus, our test sug- 
gests that ARCH effects exist at the 5% significance level. 
Engle's LM test statistic LM(O•) = 11.00. This gives a p 
value of .09; the LM statistic is just significant at the 10% 
level. Lee and King's test LBS(O•) = -2.75. This has a p 
value equal to .997, delivering an opposite conclusion. This 
results from the fact that the sample autocorrelations of the 
squared residuals are negative at some lags, although these 
negative autocorrelations are not significant for any given 
lag at reasonable levels. Likewise, BDS1/4(4c) = -.12 
which fails to reject the null. As can be seen in Table 1, 
the choices of q = 4, 8, and 12 deliver significant p val- 
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Table 1. p Values From Tests for ARCH Effects in the Residuals 
of the AR(4) Regression of the U.S. GNP Deflator 

q BP LB LM LBS QTRUN QDAN BDS1/4 

1 .442 .437 .511 .253 .614 .547 .792 
(.439) (.439) (.515) (.225) (.439) (.362) (.832) 

4 .046 .040 .076 .912 .022 .052 .516 
(.039) (.039) (.055) (.863) (.039) (.048) (.587) 

6 .104 .091 .088 .997 .096 .028 .905 
(.077) (.077) (.064) (.989) (.077) (.037) (.937) 

8 .172 .150 .154 .999 .187 .032 .724 
(.101) (.106) (.104) (.983) (.101) (.041) (.768) 

12 .394 .351 .367 1.000 .446 .070 .422 
(.263) (.281) (.282) (.987) (.263) (.062) (.619) 

16 .544 .479 .340 1.000 .589 .138 .007 
(.361) (.395) (.234) (.945) (.361) (.094) (.075) 

NOTE: The bootstrap p values appear in parentheses. Cross-validation generated qc = 6. 

ues (smaller than 10%) for QDAN(q), but the choices of 
q = 1 and 16 deliver insignificant p values (larger than 
10%). This suggests the importance of a proper choice of q. 
We see that the cross-validated q^ gives the smallest p value 
here. 

We also perform a bootstrap procedure to better compare 
the tests in this empirical setting. The bootstrap results are 
largely similar to those using the asymptotic critical values 
and are reported in parentheses in Table 1. In particular, the 
relative ranking of the tests is unchanged. 

[To confirm the source of the heteroscedasticity, we esti- 
mated an ARCH(3) model, in which only the intercept and 
coefficient on q = 3 were significant. We applied the ARCH 
tests to the new standardized squared residuals and failed 
to reject the null of homoscedasticity at reasonable levels 
for q < 20. To check robustness of the obtained results, we 
applied the tests to some later samples of the same size. 
The conclusions remain largely unchanged.] 

5.2 Exchange-Rate Data 

We now consider a high-frequency series, the daily nomi- 
nal Deutschemark/U.S. dollar exchange rate. The data, ob- 
tained from Chicago Mercantile Exchange, cover the pe- 
riod June 8, 1983, to July 24, 1991-2,048 observations. 
As noted by Bollerslev et al. (1994), most researchers 
have reached a consensus that nominal exchange rates are 
modeled best as integrated processes. We therefore model 
st = 100 I1n(DMt/DMt_1) as a first-order moving av- 
erage [MA(1)], where DMt is the spot exchange rate on 
day t. Quasi-maximum likelihood estimation of this process 
yields 

st = .0190 - .0149 et-1 + iet. 
(.0149) (.0210) 

We note that neither the constant nor the MA(1) parameter 
is significant, consistent with the integration hypothesis. 

We test for ARCH effects as in the previous example 
using the estimated squared residuals. A summary of our 
results appears in Table 2. All of the tests in Table 2 are 
significant at any reasonable level for q = 10, 20,..., 50 us- 
ing the asymptotic critical values. Therefore, all the tests 
under consideration deliver the same conclusion. [Rejec- 
tion here is not surprising given the sample size. We esti- 

Table 2. Test Statistics for ARCH Effects in the Residuals of the 
MA(1) Regression for the DM/U.S. Dollar Exchange Rate 

q BP LB LM LBS QTRUN QDAN BDS1/4 

10 155.50 155.92 111.45 8.11 32.53 40.44 7.44 
20 188.66 189.33 120.30 7.43 26.67 37.04 9.43 
29 191.88 192.60 125.61 6.29 21.39 34.00 9.72 
30 193.69 194.44 126.30 6.32 21.13 33.62 9.74 
40 205.09 206.05 140.78 5.38 18.46 30.49 9.76 
50 208.58 209.63 144.11 4.55 15.86 27.91 9.87 

NOTE: Cross-validation generated qc = 29. Under H0, BP, LB, and LM are Xq; BDS1/4, LBS, 
QTRUN, and OQDAN are N(O, 1). 

mated a GARCH(3, 3) and applied the tests to these new 
standardized squared residuals. The GARCH parameters 
were significant at any reasonable level, and all of the 
tests failed to reject the null of homoscedasticity at any 
conventional level.] Beyond this, we see that QDAN(q) is 
much larger than Lee and King's LBS(q) and BDS1/4(q). 
Moreover, our QDAN(q) is always larger than the trun- 
cated kernel-based test QTRUN(q) for all q, which can be 
viewed as a normal approximation of Box and Pierce's 
BP(q) test and has approximately the same power as BP(q) 
and LB(q). 

Of special interest here is the long lag, q^ = 29, chosen 
by cross-validation. This result is consistent with other ev- 
idence of strong persistence in the conditional volatility of 
high-frequency data. We have Qcv = QDAN(qc) = 34.00, 
significant at any level. In particular, as we allow the sam- 
ple size to grow, q, grows as well. For sample sizes of 
n = 2m with m = 6,7,..., 11 and a common start date, 
cross-validation yielded q^ = 1, 12, 8, 11, 19, and 29, respec- 
tively. This trend is consistent with our requirements for the 
theoretical results. 

Again, we performed a bootstrap of each test. The con- 
clusion using our test is the same based on the boot- 
strap critical values. In three other cases, the conclusion is 
changed. For lags greater than 20, the LM(q) and QREG(q) 
tests are now significant only at the 5% level. With the boot- 
strap critical values, LBS(q) is significant at the 1% level 
for q < 16, at the 5% level for q < 20, and at the 10% 
level for q < 25 and q > 35. This is consistent with the 
U-shaped size curve we observed for LBS(q) in the Monte 
Carlo section. 

6. CONCLUSIONS 

We propose a new ARCH test based on the sum of 
weighted squares of the sample autocorrelations, with the 
weights depending on a kernel function. Typically, the 
kernel function gives greater weight to lower-order lags. 
When a relatively large lag is employed, Engle's (1982) 
LM test, as well as the tests of Box and Pierce (1970) 
and Ljung and Box (1978), is equivalent to the trun- 
cated kernel-based test that imposes a uniform weighting 
scheme and is less efficient than nonuniform kernel-based 
tests. Our method permits choice of an appropriate lag 
via data-driven methods-for example, Beltrio and Bloom- 
field's (1987) cross-validation. Simulation studies show that 
the new test performs reasonably well in finite samples. 
The test also is applied in two empirical examples. These 
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empirical examples illustrate some merits of the present 
test. 

Some directions for further research may be pursued. As 
is well known, it is important to check the adequacy of 
an estimated GARCH model. For example, misspecifica- 
tion of a GARCH-M model will lead to inconsistent quasi 
maximum likelihood estimation. Our approach can be ex- 
tended to check adequacy of a GARCH model. If the model 
is correctly specified, then the standardized squared resid- 
ual is a white-noise process; otherwise, there is evidence of 
misspecification for GARCH. We conjecture that the pro- 
posed test also will be asymptotically N(O, 1) under correct 
specification of the GARCH, but the technicality involved 
appears nontrivial. These considerations are left for subse- 
quent work. 
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APPENDIX: MATHEMATICAL PROOFS 

For rigor and completeness, we state explicitly the con- 
ditions for the theorems. 

Assumption A.1. (a) {(t} is iid, with E(?t) = 0, E(t2) = 
1, and E(t8) < 00. (b) ?t is independent of X, for s 
< t. 

Assumption A.2. (a) For each b E B R1, where 
1 E N, g(., b) is a measurable function, and (b) g(Xt,.) 
is twice differentiable with respect to b in an open con- 
vex neighborhood N(bo) of bo E I, with lim,,, n-1 Et1 
ESUPbEN(b,) IVbg(Xt, b)ll4 < 00 and limno n-1 Etn= 
EsupbEN(bo) IVg(Xt, b)!2 < 00, where Vb and V2 are 
the gradient and Hessian operators, respectively. 

Assumption A.3. n1/2(b - bo) = Op(l). 
Assumption A.4. k: R - [-1, 1] is a symmetric function 

continuous at 0 and all but a finite number of points, with 
k(0) = 1 and fo k2(u) du < 00. 

Assumption A.5. For any z1,z2 E IR, !k(zi) - k(z2)l 
< 

Alzl - z21 for some 0 < A < oo and Ik(z)l ? Alzl-' for 
all z E gR and some 7 > . 

Theorem 1. Suppose Assumptions A.1-A.4 hold. Let 
q - oo, q/n -+ O. Then under Ho, 

Q(q) _d N(0, 1). 

To prove Theorem 1, we first state a lemma. 
Lemma A.1. For j _ 0, define f(j) = n-1 -=j+l(s2 _ 

1 (2_j - 1). Then 

n-1 

Sk2(j/q){2(j 
_ 2(j)} = 

op(ql/2/n). 
j=1 

Proof of Theorem 1. Put r(j) = Ef(j). We can write 

n-1 

Z k2(j/q)-2(j) 
j=1 

n-1 

= k2(j/q)2(j)/r2 (0) 
j=1 

n-1 

+ {f-2(0)- T2((0)} 
_ 

k2(j/q)r2(j) 
j=1 

n-1 

+ -2(0) k2(j/q) 2(j) - f2(j)}. (A.1) 
j=1 

By Markov's inequality and n-1k2(j/q)Ef2(j) (q/n) 
r2(0) {q-1 E k2(j/q)} = O(q/n), where q- j:ln k2 
(j/q) --+ f k2(z) dz, we have •?1k2(j/q)i2(j) = Op 
(q/n). Moreover, i(0) - r(0) = Op(n-1/2). It follows that 
the second term in (A.1) is Op(q/n3/2) = op(ql/2/n) given 
q/n -+ 0. The last term is also op(ql/2/n) by Lemma A.1. 
Therefore, we have 

n--1 

Sk2(j/q)2 (j) 
j=1 

n-1 

= S k2(j/q)i2(j)/r2(0) + op(ql/2/n). (A.2) 
j=1 

By Hong (1996, theorem A.2), Assumptions A.1 and A.4, 
and q -+ oco, q/n -+ 0, we have 

n-1 

n )ik2(j/q) 
2 

(j)/r2(0) - Cn (k) 

+ (2Dn(k))1/2 _d N(0, 1). (A.3) 

Both (A.2) and (A.3), together with q-1Dn(k) -+ fOO k4 

(z) dz, imply that Q(q) _+d N(0, 1). The proof will be com- 
pleted provided Lemma A.1 is proven. 

Proof of Lemma A.1. Noting i2(j) - r 2(j) = (?(j) - 
f(j))2 + 2f?(j)(^(j) - f(j)), we write 

n-1 

5 k2(j/q){C2(j) - . i2(j)} 
j=l 

n--1 

= 
5 

k2(j/q)(?(j) - e(j))2 
j=l 

+ 2 
S 

k2(j/q)i?(j)(?(j) - i(j)). (A.4) 
j=l 

We now consider the first term of (A.4). By straightforward 
algebra, we have 

i(j) - i(j) 

t=j+l 
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n 

n-1 (t2 - 1)( t-j - _t- j) 

t=j+1 
n 

t=j+l 

+-1 ( ^2 (_?2)( 2j 
t=j+1 

= At (j) + A2(j) A3(j), say. (A.5) 

Recall that it = it/&7n, t = et/co, and ut = -2 - 1. We 
have 

n 

1+lj - 
2-1 (/ )t2 - 1•2 • j 

t=j+l 
E-2 0-1 tE an .(_1W) 

t=j+l 

+ ( .2 - (o').-1 . 3t-j3 
t= t=j+ 

n 

A, (-1) n- 2 _j _•- j) 
t=j+l 

t=j+l 

+ (& 0 •o)n-1 n UtEt-j• 
t=j+l 

= -2 1(j) + 222B12(j) 

+ ( -2 _ ao2)!Bl3(j), say. (A.6) 

By the Cauchy-Schwarz inequality and noting ?t - et = 

(bo - b)'Vbg(Xt,b) for some b, where jb - bol <I lIb- bo , 
we have 

7n-1 

Sk2 k21(j) 
j=1 

= -1 0/n_-- 

j=1 t=j+l 

<^bo - 211 + k2 J -1 2 u( 

j=1 t=l 

x n-1l 
I Vbg(Xt, b) 

I 
4 

= Op(q/n2), (A.7) 

given A.1-A.4, where q-1 n-1 k2(j/q) -+ f k2(z) dz 

and n-1 E• 1 
IIVbg(Xt, b)114 = Op(1). 

Next, noting t - Et = 
(bo - b)'Vbg(Xt, b) + (bo 

- 

b)'V g(Xt, b)(bo - b) for some b, we have 

n-1 

5 k2 (j/q)22(j) 
j=1 

= k2(j/q) 
-1 

utEt-(t-j - t-j) 
j=1 t=j+l 

n-1 

< 411bo - j112 
5 

k2(j/q) 
j=1 

2 

x n-1 E utEt-jVbg(Xt-j,bo) 
t=ij+l 

n--1 

+ 2 jlbo - b114 
Z 

k2(j/q) 
j=1 S2 

X 7-1 u•uEt_ g(Xt-, b) 
t=j+l 

= Op(q/n2) (A.8) 

by Markov's inequality and Elln-1 ZEnj+1 Utt-jVbg 
(Xt-j,Ibo)ll2 

= O(n-1) given E(utlLt-1) = 0, where Lt-1 
is the information set available at period t -1. We also have 

/(2 

Sk2(j/q)B3(i) = 2(jq) n-1 UtEt-j 

j=1 j=1 t=ij+ 

= Op(q/n) (A.9) 

by Markov's inequality and E(n-1 E j+l UtE•j)2 

O(n-1) by Assumption A.1. 
Combining (A.6)-(A.9) with an 

- 
2 Op(n-1/2), we 

obtain 
n-1 

Sk2(j/q)A(j) 
= Op(q/n2). (A.10) 

j=1 

Similarly, we have 

n--1 

5 
k2(j/q)A (j) = Op(q/n2). (A.11) 

j=1 

We now turn to Ij=l-n 1k2(j/q)A(j). By the Cauchy- 

Schwarz inequality and noting t - t = a•2(?t - t) + 
(&2 - -2)et, we have 

n 

sup la3(j)12 _ n-l (• - )2 
l<j<n-1 t=l 

= •Zn-1 (I - t)2 
t=l 
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n 

+ 2(-2 -2)2 n-1 E 4 
t=1 

= Op(n-2) 
given Assumptions A.1-A.3. It follows that 

n-1 

Sk2(j/q) A3(j) 
= Op(q/n2). (A.12) 

j=1 

Hence, from (A.5) and (A.10)-(A.12), we have 
n-1 

E 
k2(j/q)((J) - f(j))2 = Op(q/n2). (A.13) 

j=1 

On the other hand, because En-1 k2(jq)f2(j) = Op(q/n), - j=l (j/q) 2(j) = OF(q/n), 
we have 

n-1 

E k2(j/q)((J) 
- ( (j))f(j) = op(ql/2/n) (A.14) 

j=1 

by the Cauchy-Schwarz inequality, (A.13), and q/n -+ 0. 
The lemma then follows from (A.4), (A.13)-(A.14), and 
q/n -+ 0. This completes the proof. 

Theorem 2. Suppose Assumptions A.1-A.5 hold. Let 
q be a data-dependent bandwidth such that q/q - 1 = 
op(q-((3/2)v-1)) for some v > (27 - )/(2,r- 1), where 
q -- oo,q'q/n -- 0. Then, under H0, Q(q) - Q(q) = op(l), 
and 

Q() __d N(0, 1). 
To show Theorem 2, we first state two lemmas. 
Lemma A.2. Let Cn(k) = E=(1 - j/n)k2(j/q) and 

D(k) = EI(1 
- j/n)(1 - (j + 1)/n)k4(j/^). Then 

q-lCn(k) = q-Cn(k) + op(q-1/2), and q-iDn(k) = 

q-'1D(k) + op(l). 
Lemma A.3. EZl {k2(j/q) - k2(j/q)2(j) = Op 

(q1/2/nr). 
Proof of Theorem 2. From the definition of Q(q), we can 

write 

Q(q)-Q(q) 

= 
{Dn(k)}-1/2{Cn(k) -- Cn(k)} 

+ 
Q(q){(Dn(k)/Dn(k))1/2 - 1} 

+ {Dni(k)}-1/2 n (k2(j/O) - k2(i/q))2(J) }. 

Here, the first term vanishes in probability by Lemma A.2 
and {D,(k)}-1/2 = Op(q-1/2), the latter follows from 
Lemma A.2, and q-iD,(k) -- fo k4(z) dz. Next, the sec- 
ond term vanishes in probability because D! (k) /D, (k) --+P 
1 by Lemma A.2 and Q(q) = Op(l) by Theorem 1. Finally, 
the last term vanishes in probability by Lemma A.3 and 

{Djn(k)}-1/2 = Op(q-1/2). Consequently, Q(O) - Q(q) = 
Op(l), so Q(j) --+d N(0, 1) given Q(q) _+d N(0, 1) by The- 
orem 1. The proof is completed provided Lemmas A.2-A.3 
are proven. 

Proof of Lemma A.2. Let integer d = [q"], where [x] 
denotes the integer part of x. Then d/n O0, d/q -- co. 
Write 

d 

Cn((k) = Cni(k) + E (1 - j/n){k2(j/l) - k2(j/q)} 
j=1 

n-1 

+ ( (1-j/n)k2(j/l) 
j=d+l 

n-1 

- S (1-j/n)k2(j/q) 
j=d+l 

= Cn (k) + C + 02n - 3n, say. (A.15) 

We show that the last three terms are op(ql/2). First, we 
consider C2n. Given jk(z)j < Alzl-r in Assumption A.5 
and O/q --+P 0, we have 

n-1 

IC2Tn[ 
? 

A2q2r(/q)27 j-27 
j=d+l 

= 
Op(q2r/d2T-1) 

= Op(ql/2), (A.16) 

where the last equality follows from d = [q"] for v > (27 - 

*)/(27 - 1). Similarly, 

C3n 
= o(qi/2). (A.17) 

For the second term in (A. 15), we decompose 

d 

Cln 
< {k(j/) )- k(j/q)}2 

j=1 
d 

+ 2 J {k(j/l) - 
k(j/q)}k(j/q)l. 

j=1 

Given the Lipschitz condition on k (in Assumption A.5), 
q/q - 1 = op(q-((3/2)v-1)), and d = [qv], we have 

d 

E {k(j/q)- k(j/q)}2 
j=i 

d 

< A2-2(/q)2(t/q -- 1)2 5j2 = Op(1). 
j=i 

This, together with 
Ed=l k2(j/q) = O(q) and the Cauchy- 

Schwarz inequality, implies 

Z {k(j/4)- k(j/q)}k(j/q)- op(ql/2). 
j=1 

It follows that 

Cl, = op(ql/2). (A.18) 

Collecting (A.15)-(A.18) yields q-l(C'n(k) = q-Cn(k)+ 
op(q-1/2). The result q-1 (k) = qiD (k) + op(1) can 
be shown analogously. 

This content downloaded from 128.84.125.184 on Fri, 22 Nov 2013 14:15:07 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


Hong and Shehadeh: A New Test for ARCH Effects 105 

Proof of Lemma A.3. Recalling the definition of f(j) in 
Lemma A.1, we can write 

n-1 

E {k2(j/q) - k2(j/q)}P2(j) 
j=1 

n-1 

= -2(0) {k(2(j/) - k2(j/q)} 2(j) 
j=1 

n-1 

+ -2(0) E {k2(j/l) - k2(j/q)} 
j=1 

x {12(j) _ 2(j)}. (A.19) 

For the first term of (A.19), we have 
n-1 

E {k2(j/l) - k2(j/q)} 2(j) 
j=1 

d n-1 

= I{k(2(j/4) 
- 

k2(j/q)} 2(j) + > k2(j/q)f2(j) 
j=1 j=d+l 

n-1 

- E3k2(j/q)i2(j) 
j=d+l 

= Din + D2n - D3n, say. (A.20) 

We first consider D2n. Given Ik(z)l < Alzj-', we have 

n-i 
D2n A2q27r(/q)27 -2()}j=dl 

j=d+1 

= op(ql/2/n), (A.21) 

given q/q -+P 1 and d = [q"] for v > (27 - -)/(27 - 
1), where E -jf-27 (j) = Op(dl-2r/n) by Markov's 
inequality and Ef2(j) = O(n-1). Similarly, we have 

D3n 
= op(ql/2/n). (A.22) 

Next, we consider the first term in (A.20). We write 

d 

Din - {k(j/l) - k(j/q)}2f2(j) 
j=1 

d 

+ 2 {k(j/) - k(j/q)}k(j/q)f2(j) 
j=1 

= Dlln + 2D12n, say. (A.23) 

Given the Lipschitz condition on k (Assumption A.5), we 
have 

D11, < A2q-2q(q/c)2( /q - 1)2 j2r2(j) 
j=1 

= A2 -2op(q-(3v-2))Op(d3/n) 

= 
Op(n-1), (A.24) 

where c/q - 1 = op(q-((3/2)V-1)) and Zj]lJ2f2(J) 
Op(d3/n) by Markov's inequality. Next, by the Cauchy- 
Schwarz inequality and E k2(J/q) 2(j) = Op(q), we 

have 

d 1/2 

JD12nj 1 (D 11)1/2 k2(j/q)f2(j) 
j=1 

op(q1/2/n). (A.25) 

It follows from (A.23)-(A.25) that 

Din = op(q1/2/n). (A.26) 

Combining (A.20)-(A.22) and (A.26), we obtain that, for 
the first term of (A.19), 

n-1 

S {k2(j/q) - 
k2(j/q)}f2(j) = op(q1/2/n). (A.27) 

j=1 

Next, we consider the second term of (A.19). Because 

j= k2(j/q){2( _ 2(j)} = op(ql/2/n) by Lemma 

A.1, it suffices to show --•1k2(j/){ri2(j) 
_ f2(j)} 

op(ql/2/n). Put 

n-1 

Wn = (n/q1/2) E k2(j/q)lr2(j) - 2(j)[. 
j=1 

We shall show WI, = op(l). For any given q > 0, 6 > 0, 

P(Wtn > q) < 
P(WTr, > rl, Iq/q - 11 < 6) +P(li q - 11 > 6), 

where the last probability converges to 0 as n -+ oc, given 
l/q - 1 = op(1). Thus, it remains to show that the first 

probability also vanishes. Put 

{ 1 if I < zo 
k(z) = Ajzj- if 1z, > zo, 

where 0 < zo < oc and A, 7 are given in Assumption A.5. 
Then [k(z)l k(z), and k(z) is monotonically decreasing 
on IR+ = [0, 00]; that is, k(zi) > k(z2) if 0 < z1 < Z2. 
Furthermore, we have fo k2 (z) dz < 00, given 7 > 2. It 
follows that [k(j/q^)l k(j/^) <_ k{j/(1 - 6)q} if 2> 
(1- 6)q. Whence, the first probability will vanish as n -+ o00 
if 

n-1 

(n/(1 - 6)q1/2) 
x 

c2{j/(1 - 6)q}li2(j) 
_ •2(J)l = Op(1) 

j=1 

for any given small 5 > 0, which follows by a reasoning 
analogous to the proof of Lemma A.1 and the fact that 

q-1 Ej=I k2(j/q) 
k 2(Z) dZ < 00 as q -+ o00. There- 

fore, we have Wn = op(1), or equivalently, 

n-1 

> k2(j/q)r2(j) - i2(j)[ = op(ql/2/n). (A.28) 
j=1 

Combining (A.19), (A.27)-(A.28), and Lemma A.1 then 
yields the desired result. 
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Theorem 3. Suppose Assumptions A.1-A.3 hold. Let 
q -+ oo, q5/n -+ 0. Then under Ho, QTRUN(q) - QREG(q) = 
op(1) and 

QREG(q) -+d N(0,1). 

Proof of Theorem 3. Put Z = (Z1,I...I, )', Zt = 
^2 = 2/2 (^2/^2 2/n - 1), and (1, 

7 
_1,..., 6_tq) 

6 
1• ( 12/ - 1,...,O n 

Rq = (R(1),.. .,R(q))', where R(j) = n- Et+ t 

an)(2_j 2 - 3). Then by definition (e.g., see Engle 1982), 
we have 

R2 = U'Z(Z'Z)-1Z'U/(U'U). 

By straightforward algebra, we have R2 = (nR 2(0))2 RA'-1 

Rq,, where A is a q x q symmetric matrix with the (i, j) el- 
ement 

n 

(^2 2) _ -2 
Aij - _- E • t) 

t=max(i,j)+ 1 

and 3 =n-1 E 3 2. Because nE=l2 ()=n =1 
R2 2(j)R (0), it follows that 

q 
nR2 -n P2 (j) 

j=1 

= nri-2(0)(R(O)RIA-lRq 
- 1 

Rq) 

= nR2[r-2(0)Oq(R(0)Iq - A)Oq, (A.29) 

where , = A-1/2q/V is a q x 1 unit vector in Eq = 

{0 E R• :0'0-= 1}. 
Put Sn = supoe- O'(i(O)Iq - A)O. We first show Sn = 

Op(q2/n1/2). For this, we write 

q q n 

ISnl = sup n-1 ( 2)6 
OEeq i=1 j=1 t=1 

n 

E ( T 
-2 

- Gr 
2 2 

O, 

t=max(i,j)+1 

q (n 
< sup 5 (?2&2)2 

GEeq j=1 t=l 

t=j+1 

+2 sup Z 
Zn-1 

Geeq j=2 i=1 t=j+l 

? •xi --)• - 3 ), 

= B1, + 2B2,, say. (A.30) 

For the first term of (A.30), we have 

q 
( 

n 

Bl, = sup 02 n-1 (A- 4) 
Oeeq j=l t=l 

n 

1 
_ n11 (-4_j_4) 

t=j+1 

q ( n 

sup 0 n -1 5 
OEeq j=1 t=n-j+l 

- 2 /2 n + j)(n -- 3 

qn S 

<sup .0 n-1 4 
Eeq 1 j=1 t=n-j+l 

q ( n 

Sup (& +2 -1 5 - 
8EEq j=l t=j+l 

n n 

1 4 E -4 2 12 < n- 5 t +23n&n- • t 
t=n-q+1 t=n-q+l 

= Op(q/n). (A.31) 

For the second term of (A.30), we have 

q j-1 n 

B2n < 
-1 

E (-i -2)(-2-j 
j=2 i=1 t=j+1 

q j-1 n 

n1 E nz-1 C-i-j 
j=2 i=1 t=j+l 

q j-1 n - --1 2_ - 
j=2 i=1 t=j+1 

q j-1 n 

+ n- E (t-i - ct- ) - j=2 i=1 t=j+1 

q j-1 n 

j=2 i=1 t=j+1 

j=2 i=1 t=j+1 

= CI + C2• + C3n + C4n = Op(q2/nZ/2). (A.32) 
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Here, 

q a-i n 1/2 n 1/2 
C1 -4 -2 

_ 2)2 
Cln n- t n 

(gSt - t 
j=2 i=1\ t=l t=l 

= op(q2/n1/2) (A.33) 

given n-r E t•l2 - tn 2 2 Op(n-1). Similarly, 

C2n = Op(q2/n1/2). (A.34) 

We also have 

cn < q - 2 n-2 21 
?t 7q 

t=l j=2 

2 -1 l 2 p 2 < 
n 

t an g 
t=+ 

q n-1 C E2 t 1-2 -2 

t= j=2 

2 -1 E 
2 

1-2 _a 
2 

21 n an 0 

n n 

t=l t=n-q+l 

- Opp(q2 /n/2). (A.35) 

Finally, by Markov's inequality and the fact that under Ho 

n 

2 1/2 

< E n-1 C 
2 

i j 
- 

0,2) = O(n-1/2), pleest- tet-proo 
t= j+ 

we have 

C4n = 
Op(q2/n1/2). (A.36) 

Collecting (A.32)-(A.36) yields B2n = Op(q2/n1/2). This, 
together with (A.30)-(A.31) and q5/n -. O, implies Sn = 
Op(q2/n1/2) 

= Op(1). It follows from (A.29) that nR2 

is of the same order of magnitude as n •_ j=l f2(J); that 
is, nR2 = Op(q). Therefore, from (A.29) and q5/n -• 0 
again, we obtain nR2 n q=1 j2(j) 

= 
Op(q3/n1/2) 

= 

op(ql/2). Consequently, QREG(q) - QTRUN(q) = Op(1) and 

QREG(Q) - d N(0, 1) because QTRUN(q) •d N(0, 1) by 
Theorem 1 and the facts that C,(k) = q + o(q1/2) and 
D,(k) = 2q(1 + o(1)) as q5/n --, O,q -, co. This com- 
pletes the proof. 

[Received January 1996. Revised May 1998.] 
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